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The “Smart Predict-then-Optimize” (SPO) framework has gained attention for its ability to integrate pre-

diction and optimization in decision-making tasks. In this paper, we propose two novel gradient descent

algorithms that incorporate the exponential mechanism and Gaussian mechanism within the SPO frame-

work, aiming to strike a balance between data privacy and optimization performance. We provide a rigorous

performance analysis of the algorithms, demonstrating their ability to preserve privacy without significantly

affecting convergence rates. Moreover, we establish that under specific conditions, these algorithms achieve

provably near-optimal accuracy in terms of the expected SPO loss. Experimental results further support

our theoretical insights, highlighting the algorithms’ robust performance in both private and non-private

settings.
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1. Introduction

In the era of big data and advanced machine learning, optimizing models and ensuring data

privacy has become a top priority for businesses in the fields of healthcare (Dankar and El Emam

2013), finance (Li et al. 2019), and e-commerce (Reddy et al. 2023). Traditional gradient descent

techniques for tuning the machine learning model parameters frequently face major difficulties in

balancing sensitive data protection and optimization performance.

Differential privacy (Dwork 2006) has emerged as a robust framework for protecting individual

data points during a machine learning process. By incorporating controlled noise into the machine

learning procedure, differential privacy ensures that any data point’s inclusion or exclusion has

no significant impact on the learning outcome, protecting privacy without drastically reducing the

model’s performance.

Concurrently, decision-oriented learning has gained attention with specialized loss functions like

the Smart Predict-then-Optimize (SPO) loss and its more practical version the SPO+ loss (Elmach-

toub and Grigas 2022). These loss functions are designed to directly leverage the optimization
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problem structure, measuring the decision error induced by certain predictions. SPO+ loss, in par-

ticular, offers tractable computational properties and near-optimal theoretical guarantees, making

it a preferred choice in scenarios where prediction accuracy directly impacts optimization outcomes.

Despite significant advancements, existing data analytics approaches often struggle with the

balance between maintaining strong privacy guarantees and achieving high optimization perfor-

mance, especially when leveraging sophisticated loss functions like SPO+. Moreover, the extension

of privacy-preserving techniques to generalized loss functions remains underexplored, limiting their

applicability in broader optimization contexts.

In this paper, we address these challenges by proposing two novel gradient descent algorithms

that ensure differential privacy in optimizing the SPO+ loss function. Our approach protects sensi-

tive data while maintaining near-optimal convergence rates. We conduct a theoretical performance

analysis of the proposed algorithms, demonstrating their efficacy in preserving privacy without

substantial degradation in optimization performance. Furthermore, we extend our methodology to

accommodate the nonconvex and thus more intractable SPO loss function under specific conditions,

thereby broadening the algorithm’s applicability across various optimization scenarios.

Private SPO optimizes decisions based on predicted outcomes while preserving data privacy, and

addresses more complex decision-making problems typically applied in highly uncertain scenarios.

On the contrary, Private convex optimization directly solves convex optimization problems with

privacy constraints, focusing on the optimization of certain fully fixed objectives without integrating

the prediction procedure with the decision-making process. As a result, the private SPO method

can generate more reliable decisions in uncertain environments compared to the naive “first predict,

and then optimize” method via the private convex optimization.

Our key contributions are summarized as follows:

1. We introduce two novel perturbed first-order methods and a smoothing scheme that integrates

differential privacy with the SPO+ loss function. To the best of our knowledge, these are the first

proposed algorithms for smart predict-then-optimize with provable privacy guarantees.

2. We prove that the proposed two algorithms both achieve O
(√

1
n
+h(ε, δ) 1

n

)
SPO+ loss, and

provide a matching lower bound (the function h(·) will be specified later).

3. We show the convergence analysis of the algorithms can also hold for the nonconvex SPO loss

under certain conditions.

1.1. Related Literature

The smart “Predict-then-Optimize” framework was a recently proposed efficient approach for

balancing the estimation error and optimization error in a general decision-making process (Elmach-

toub and Grigas 2022, Bertsimas and Kallus 2020). There has been an enormous number of papers
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to apply the SPO framework under different contexts, e.g., combinatorial optimization (Mandi

et al. 2020), inventory management (Qi et al. 2023), vehicle routing (Soeffker et al. 2022), and

maritime transportation Tian et al. (2023).

Differential privacy (DP) has been one of the most powerful concepts in terms of data privacy

in machine learning. Since the inaugural works (Dwork 2006, Dwork et al. 2006), there have been

numerous works that have further contributed to the theoretical development of DP, including

performing mechanism designs to ensure DP (McSherry and Talwar 2007), the k-fold composition

rule of DP (Dwork et al. 2010), the statistical framework of DP (Wasserman and Zhou 2010), private

optimization algorithm design (Bassily et al. 2014), optimal rates for private convex optimization

(Bassily et al. 2019).

Since the primary objective of this work is to introduce a novel framework for private SPO, our

work can also be seen as a generalization from the more well-studied private convex optimization

literature (see, e.g., Bassily et al. 2021, Gopi et al. 2022).

1.2. Notations

The dataset is denoted as D = {(ci, xi)}ni=1, where ci ∈ Rd is the cost function and xi ∈ Rp

is the feature vector. Let d represent the dimension of both the cost vector c and the decision

vector w. In our algorithm, to keep it concise, we let ℓ(c,x) := ℓSPO+(c,x), which is closed and

convex. The loss function ℓµ is derived by smoothing the original loss function ℓ. For ℓ and ℓµ, we

respectively define the expected risk and empirical risk: L=ED∼P[ℓ(c,x)], Lµ =ED∼P[ℓµ(c,x)] and

L̂= 1
n

∑n

i=1 ℓ(ci, xi), L̂µ = 1
n

∑n

i=1 ℓµ(ci, xi). L is the Lipschitz constant for lµ. (ε, δ) are exclusive

for Differential Privacy. Proj(·) is a projection function that maps a vector onto a certain set.

In regret analysis, Ω(f(n)) denotes the lower bound, meaning the regret grows at least as fast as

f(n), while O(f(n)) denotes the upper bound, meaning the regret grows at most as fast as f(n).

Let S be the domain of decision w, which, in our experiments, is taken to be the unit sphere, i.e.,

S = {w ∈Rn : ∥w∥2 = 1}. Bw and BB represent the absolute upper bound of w and B.

2. Preliminaries for Differential Privacy

Suppose that a data science team is developing a new health app, which aims to provide per-

sonalized health recommendations based on user data. To protect user privacy, they decided to

implement differential privacy. In other words, even after seeing the app’s recommendations for

a specific user, it remains extremely difficult to infer or speculate about the individual’s detailed

personal information. The parameter ε in the following definition quantifies the degree of privacy

protection.
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Definition 1. A randomized mechanismM is (ε, δ)-differentially private if for all datasets D1

and D2 differing on at most one element (called neighboring datasets), and for all subsets S of the

output space ofM, the following holds:

P[M(D1)∈ S]≤ eε ·P[M(D2)∈ S] + δ

Additionally, it is called ε-DP when δ= 0.

A lower ε value indicates stronger privacy guarantees, as it limits the amount of information that

can be inferred about any individual from the data analysis results. Conversely, a higher ε value

allows for more accurate analysis but provides less privacy protection. This parameter allows data

scientists and privacy experts to precisely tune the trade-off between data utility and individual

privacy in their applications.

The Exponential mechanism and the Gaussian mechanism are both effective methods used in the

field of differential privacy to ensure that the output of an algorithm doesn’t reveal too much infor-

mation about any individual’s data. The Gaussian mechanism adds noise drawn from a Gaussian

distribution directly to the numeric output, while the exponential mechanism introduces random-

ness through a probabilistic selection based on a utility function rather than adding noise directly

to the output.

2.1. Exponential Mechanism

Definition 2. The Exponential MechanismM selects an output r with probability:

P[M(D) = r] =
exp (ε ·u(D, r))∑

r′∈R exp (ε ·u(D, r′))

where u(D, r) is a utility function, ∆u is the sensitivity of the utility function u, i.e. for any two

neighboring datasets D and D′,∆u=maxr∈R |u(D, r)−u(D′, r)|.

Theorem 1 (McSherry and Talwar (2007)). M is 2∆u · ε-differential private.

Throughout this paper, we consider the utility function u as a binary function taking values only

in 0 or 1, thus ∆u= 1. Meanwhile, we adopt a uniform sampling scheme:

P[M(D)∼P1] =
eε

eε +1
, P[M(D)∼P2] =

1

eε +1

where P1,P2 are respectively uniform distribution over disjoint regions.

2.2. Gaussian Mechanism

Definition 3. Given a query function f :D→ Rk and a dataset D, the Gaussian Mechanism

outputs:

M(D) = f(D)+N (0, σ2)

where N (0, σ2) is noise drawn from a Gaussian distribution with mean 0 and standard deviation

σ.
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From Dwork et al. (2014) we obtain the following statement:

Theorem 2. Let ε ∈ (0,1) be arbitrary. For c2 > 2 ln(1.25/δ), the Gaussian Mechanism with

parameter σ≥ c∆2(f)/ε is (ε, δ)-differentially private, where ∆2(f) =max∥x−y∥1=1 ∥f(x)− f(y)∥2.

2.3. Post-Processing

Suppose M is a (ε, δ)-DP mechanism. It is evident that any post-processing operation applied

to the output ofM, provided it does not introduce new data-dependent information, preserves the

(ε, δ)-differential privacy guarantee of the overall process. In other words, f is any data-independent

function, considering the pre-image f−1 we have P[f ◦M(D)∈ S′] = P[M(D)∈ S], P[f ◦M(D′)∈
S′] = P[M(D′) ∈ S] where S = f−1(S′). Therefore P[f ◦M(D) ∈ S′]≤ eεP[f ◦M(D′) ∈ S′] + δ, i.e.

f ◦M is also (ε, δ)-DP. The post-processing property is straightforward to understand: if a process

already satisfies a certain level of differential privacy, any subsequent post-processing of its results

will not compromise the existing privacy guarantees.

3. Preliminaries for SPO

Before introducing the SPO framework, let us describe the predict-then-optimize framework.

Namely, predict-then-optimize involves making predictions and optimizing based on those predic-

tions, where the predictions always depend on the current features. Mathematically, this can be

expressed as solving the contextual stochastic optimization problem:

min
w∈S

Ec∼Dx [c
⊤w | x] =min

w∈S
Ec∼Dx [c | x]⊤w,

where c is the predicted vector based on current feature x, w is the decision vector based on the

prediction c, Dx is the conditional distribution of c given x. So, how can we make the predict-then-

optimize framework “smart”?

Traditional loss functions typically focus on the deviation of prediction, for example, mean

squared error and hinge loss. However, the actual “loss” remains constant as long as the decision

w is the same despite the prediction c may be different as shown in Figure 1.

3.1. Smart Predict-then-Optimize

Following Elmachtoub and Grigas (2022), first we define the nominal (downstream) optimization

problem, which is of the form

P (c) : z∗(c) :=min
w
cTw

s.t. w ∈ S,

where w ∈Rd are the decision variables, c∈Rd is the problem data describing the linear objective

function, and S ⊆Rd is a nonempty, compact (i.e., closed and bounded), and convex set representing

the feasible region.
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Figure 1 This image visually illustrates the difference between the SPO loss function and traditional loss

functions, such as Mean Squared Error (MSE) shown in the diagram: ℓMSE(ctrue, cpredict) = ∥ctrue − cpredict∥2.

Definition 4 (Elmachtoub and Grigas (2022)). Given a cost vector prediction ĉ and a

realized cost vector c, the SPO loss ℓSPO(ĉ, c) is defined as

ℓSPO(ĉ, c) := max
w∈W∗(ĉ)

{cTw}− z∗(c).

To begin the derivation of the SPO+ loss, we first observe that for any α∈R, the SPO loss can

be written as

ℓSPO(ĉ, c) = max
w∈W∗(ĉ)

{cTw−αĉTw}+αz∗(ĉ)− z∗(c), (1)

since z∗(ĉ) = ĉTw for all w ∈W ∗(ĉ). Clearly, replacing the constraint w ∈W ∗(ĉ) with w ∈ S in (1)

results in an upper bound. Since this is true for all values of α, then

ℓSPO(ĉ, c)≤ inf
α

{
max
w∈S
{cTw−αĉTw}+αz∗(ĉ)

}
− z∗(c). (2)

Setting α= 2, we obtain the SPO+ loss as follows:

Definition 5 (Elmachtoub and Grigas (2022)). Given a cost vector prediction ĉ and a

realized cost vector c, the SPO+ loss is defined as

ℓSPO+(ĉ, c) :=max
w∈S
{cTw− 2ĉTw}+2ĉTw∗(c)− z∗(c).

Noticing z∗(ĉ)≤ ĉTw∗(c), we know that ℓSPO ≤ ℓSPO+ directly, which will be restate in Section

6 “From SPO+ to SPO”.

Throughout the paper, we mainly focus on SPO+ loss since it is convex and thus can be written as

a conjugate of another function, i.e. there exists a function g such that f(x) = g∗(x) = supy{⟨x, c⟩−
g(y)}.

ℓSPO+(c, ĉ) :=max
w∈S

{
cTw− 2ĉTw

}
+2ĉTw∗(c)− z∗(c)

=max
w∈S

{
cTw− 2ĉTw+2ĉTw∗(c)− z∗(c)

}
=max

w∈S
{⟨−2w+2w∗(c), ĉ⟩− ⟨−w+w∗(c), c⟩}

To clarify, we restate the definition of DP through the lens of SPO:
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Definition 6. A randomized algorithm A is (ε, δ)-DP if ∀ neighboring datasets D1 =

{(c1, x1), ..., (ci, xi), ..., (cn, xn)},D2 = {(c1, x1), ..., (c
′
i, x

′
i), ..., (cn, xn)} and ∀ w ∈ S, the following

holds:

P[A(D1) =w]≤ eε ·P[A(D2) =w] + δ.

3.2. Smoothing

Given that the SPO+ loss function is non-smooth, we apply smoothing techniques to approximate

its gradient for faster optimization rates. Let us first define smoothness formally.

Definition 7. A function f : Rn → Rm is said to be Lipschitz continuous if there exists a

constant K ≥ 0 such that for all x,y ∈Rn,

∥f(x)− f(y)∥ ≤K∥x−y∥,

Definition 8. A function f : Rn→ R is called β-smooth if it is differentiable and its gradient

is Lipschitz continuous with constant β > 0. This means that for all x,y ∈Rn,

∥∇f(x)−∇f(y)∥ ≤ β∥x−y∥.

Note that, if further, the domain is bounded, then ∥f(x)− f(y)∥ is also bounded by ∥x−y∥.

Lemma 1. If f : Rn→ R is β-smooth and the domain is bounded, then f is also Lipschitz con-

tinuous.

We use the smoothing technique introduced in Chen (2020):

Suppose f = g∗, namely,

f(x) = sup
z
{⟨z,x⟩− g(z)}.

We can build a smooth approximation of f by adding a strongly convex component to its dual,

namely,

fµ(x) = sup
z
{⟨z,x⟩− g(z)−µd(z)}= (g+µd)∗(x),

for some 1-strongly convex and continuous function d(·)≥ 0. We have the following two proper-

ties:

1. g+µd is µ-strongly convex =⇒ fµ is 1
µ
-smooth

2. fµ(x)≤ f(x)≤ fµ(x)+µD with D := supx d(x)

More specifically, for the SPO+ loss function, the smoothed function with respect to the predic-

tion variable ĉ is given by

ℓµ(c, ĉ) =max
w∈S

{
⟨−2w+2w∗(c), ĉ⟩− ⟨−w+w∗(c), c⟩− 1

2
µ∥w∥22

}
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4. The Exponential Descent Method

We develop a novel exponential mechanism for optimizing the SPO loss, called exponential

descent. This mechanism is inspired by Gopi et al. (2022).

Figure 2 The descent direction in Algorithm 1.

Recall the SPO+ Loss Function:

lSPO+(c, ĉ) :=max
w∈S

{
cTw− 2ĉTw

}
+2ĉTw∗(c)− z∗(c)

where ĉ= B̂x, B̂ = (B̂1, ..., B̂d)T is unknown, d is the dimension of ĉ, B̂j is a p-dimension vector.

ĉTw =
∑d

j=1(x
T B̂j)wj =

∑d

j=1

∑p

i=1(xiB̂
j
i )wj, we can consider B̂ as an pd-dimension vector. We

define B := vec(B̂) as the vector obtained by vectorizing matrix B.

Our concern lies in the potential for inferring the original data pair (c,x) given knowledge

of the decision w. Consequently, we conduct an analysis of the algorithm’s differential privacy

characteristics with respect to the decision variable w.

Lemma 2. For each iteration, ED is ε-Differential Private.

The post-processing property of differential privacy ensures that our algorithm maintains ε-

differential privacy when only the final decision w is disclosed, as each step of the algorithm inde-

pendently satisfies ε-differential privacy. However, a more complex scenario arises when considering

the potential disclosure of decisions w generated at each intermediate step of the algorithm.

To address this scenario, we now turn our attention to defining the composition of differential pri-

vacy, which will allow us to analyze the cumulative privacy guarantees when multiple outputs from

the privacy-preserving process are revealed. Further details and concepts related to composition

can be found in the appendix. By Corollary 8.3.3 in Duchi (2024) we know that:
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Algorithm 1: Exponential Descent (ED)

Input: Dataset D= {(xi, ci)}ni=1 ∈X n×Cn; an upcoming feature vector xn+1

Set initial point B1 = 0;

for t= 1 to T − 1 do
Draw a descending direction;

Gt|∇L̂µ(Bt;D)∼

{
Uniform({∥v∥2 = 1 : ⟨v,∇L̂µ(Bt;D)⟩ ≥ 0}) w.p. eε

eε+1

Uniform({∥v∥2 = 1 : ⟨v,∇L̂µ(Bt;D)⟩ ≤ 0}) w.p. 1
eε+1

Update the parameter;

Bt+1←Bt− η∥∇L̂µ(Bt;D)∥2Gt

end

Set final parameter:

B←Proj

(
1

T

T∑
t=1

Bt

)
Output: ĉ= B̂xn+1 and w∗(ĉ)

Lemma 3. Assume that each channel is ε-differentially private. Then the composition of k such

channels is kε-differentially private. Additionally, the composition of k such channels is(
3k

2
ε2 +

√
6k log

1

δ
· ε, δ

)
differentially private for all δ > 0.

Let each iteration satisfies ε0 =

√
2 log 1

δ+2ε−
√

2 log 1
δ√

3k
-Differential Privacy, then we have:

Theorem 3. For any number of iterations T ≥ 1, Algorithm ED is (ε, δ)-DP.

Next, we analyze the regret of the algorithm. Following the approach in Chen and Chua (2023),

we can decomposeR(P) =EED,D∼P [L(B)]−L(B∗) into three parts: EED,D∼P

[
L(B,D)−L̂(B,D)

]
+

EED,D∼P

[
L̂(B)−L̂(B∗)

]
+
[
L̂(B∗)−L(B∗)

]
, then derive upper bound bound for each of them.

Through this process, we find that R(P) is of the form aη+ b 1
η
≤ 2
√
ab where η is the step size.

Theorem 4 (Upper Bound). Take

η=

√
eε−1
eε+1

B2
B

4T√
L2(1+T )

n
+ eε−1

eε+1
(L

2

4
+ B2

w
4
)
, T = n2,

then

R(P) =O
√

1

n
+

(
eε− 1

eε +1

1

n

)
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where R(P) :=EED,D∼P [L(B)−L(B∗)] is the regret of Algorithm GP under distribution P.

In terms of the lower bound, from Bassily et al. (2019) we know that the lower bound of Ω(1/
√
n)

for the excess loss of non-private stochastic convex optimization (SCO) can be applied for private

SCO. Further we show in the proof of Theorem 6.3 that R(P) has a lower bound of the form

Ω( e
ε−1

eε+1
1
n
).

Theorem 5 (Lower Bound). Let n ∈ N and δ > 0. There exists a dataset D = {(ci, xi)}ni=1

with probability at least 1
2
such that:

R(P) =Ω

(
1√
n
+
eε− 1

eε +1

1

n

)
.

5. The Gaussian Descent Method

Algorithm 2: Gaussian Descent (GD)

Input: Dataset D= {(xi, ci)}ni=1 ∈X n×Cn; an upcoming feature vector xn+1

Set initial point B1 = 0;

for t= 1 to T − 1 do
Draw a descending direction with Gaussian noise;

Gt ∼∇L̂µ(Bt;D)+N (0, σ2Id)

where σ2 = 8L2T ln(1/δ)

n2ε2
;

Update the parameter;

Bt+1←Bt− ηGt

end

Set final parameter:

B←Proj

(
1

T

T∑
t=1

Bt

)
Output: ĉ= B̂xn+1 and w∗(ĉ)

Now we turn to another famous mechanism from the differential privacy literature: the Gaussian

mechanism. We call our corresponding algorithm the Gaussian descent method. Considering that

the Gaussian mechanism satisfies (ε, δ)-differential privacy, we have:

Theorem 6. For any number of iterations T ≥ 1, Algorithm GD is (ε, δ)-DP.
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In fact, due to the nature of differential privacy being independent of the loss function, we can

directly see the above theorem from Theorem 3 in Chen and Chua (2023), as the two theorems are

essentially identical. Similarly, we can derive similar results compared to those of the ED method:

Theorem 7 (Upper Bound). Take

η=

√
∥BB∥2

2T√
L2

2
+ dσ2

2
+ B2

w
4
+ L2(1+T )

n

, T = n2,

then

R(P) =O

(
1√
n
+

√
d ln(1/δ)

nε

)
.

Theorem 8 (Lower Bound). Let n ∈ N and δ > 0. There exists a dataset D = {(ci, xi)}ni=1

with probability at least 1
2
such that:

R(P) =Ω

(
1√
n
+

√
d ln(1/δ)

nε

)
.

6. From SPO+ to SPO

In this section, we will extend the convergence results for the SPO+ loss to the SPO loss. From

Proposition 3 in Elmachtoub and Grigas (2022) we have:

Lemma 4. For every pair (c, ĉ), ℓSPO+(c, ĉ)≥ ℓSPO(c, ĉ).

Next, we present that in terms of mathematical expectation, the SPO loss and the SPO+ loss

take the same value at E[c|x].

Lemma 5. When c≤ 2E [c|x] almost surely, we have

Ec,x

[
max
w∈S
{cTw− 2E [c|x]T w}

]
=Ex

[
max
w∈S
{E [c|x]T w− 2E [c|x]T w}

]
=Ex

[
max
w∈S
{−E [c|x]T w}

]
.

Theorem 9. If W ∗(E[c|x]) is a singleton a.s. and 2E[c|x]≥ c≥ 0 a.s. then

Ec,x[ℓSPO+(ĉ=E[c|x], c)] =Ec,x[ℓSPO(ĉ=E[c|x], c)].

Why do we care about the relationship between the two losses at E[c|x]? This is because from

the proof of Theorem 1 in Elmachtoub and Grigas (2022), we observe that E [c|x] minimizes both

the SPO and SPO+ risk, if the following four conditions hold:

1. Almost surely, W ∗(E[c|x]) is a singleton, i.e., Px(|W ∗(E[c|x])|= 1)= 1.

2. For all x∈X , the distribution of c|x is centrally symmetric about its mean E[c|x].
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3. For all x∈X , the distribution of c|x is continuous on all of Rd.

4. The interior of the feasible region S is nonempty.

Therefore, we have the following corollary given the assumptions stated above and the conditions

of Theorem 9 (namely, 2E[c|x]≥ c≥ 0):

Corollary 1. Ec,x

[
ℓSPO+(B̂x)− ℓSPO+(E [c|x])

]
≥Ec,x

[
ℓSPO(B̂x)− ℓSPO(E [c|x])

]
.

As a special case, when there exists a matrix B∗ such that E [c|x] =B∗x and 2E[c|x]≥ c≥ 0, we

can infer convergence in the SPO framework from convergence in the SPO+ framework:

Ec,x

[
ℓSPO(B̂x)− ℓSPO(B

∗x)
]

=Ec,x

[
ℓSPO(B̂x)− ℓSPO(E [c|x])

]
≤Ec,x

[
ℓSPO+(B̂x)− ℓSPO+(E [c|x])

]
=O

(√
1

n
+h(ε, δ)

1

n

)
,

where h(ε, δ) = eε−1
eε+1

for the Exponential Mechanism and h(ε, δ) =
√
d ln(1/δ) for the Gaussian

Mechanism.

7. Numerical Experiments

To validate the effectiveness of the proposed algorithms and embody the impact of the (ε, δ)

parameters on convergence, we conducted several experiments as follows. We simply assume that

the real dataset satisfies c= B̂x, where B̂ = I =

1 0 0
0 1 0
0 0 1

 ∈R3×3, c,x ∈R3. For each sample size

n, the number of iterations is set to n2, as stated in the previous theorem. Additionally, for each

n, we randomly generate n values of x, and then obtain n corresponding values of c. First, we

consider the comparison of SPO loss convergence between two algorithms (exponential mechanism

and Gaussian mechanism) and the non-private case under the setting (ε, δ) = (10,0.4) in Figure 3.

Recall the definition of Differential Privacy: P[M(D1)∈ S]≤ eε ·P[M(D2)∈ S] + δ. For different

parameter pairs (ε, δ), based on the definition of DP, we can infer that the convergence rate

decreases as ε increases. For δ, which means with probability of 1− δ achieving DP, we can deduce

that as δ increases, the DP guarantee becomes weaker, while the convergence improves. We show

the SPO loss of the Exponential mechanism and Gaussian mechanism with different sample sizes

and parameter pairs (ε, δ). We show the convergence of exponential mechanism and Gaussian

mechanism with different sample sizes and parameter pairs (ε, δ).
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Figure 3 The figure shows the SPO loss curves as a function of the sample number n for three cases:

non-private, exponential mechanism and Gaussian mechanism. Due to inherent randomness, we repeated each

experiment 5 times for each n. The solid lines represent the mean values, while the shaded regions reflect the

variance across the 5 repetitions.

Exponential Mechanism Gaussian Mechanism

epsilon Mean Variance Mean Variance

0.1 0.0102 3.39e-05 0.0106 4.9e-05
1 6.85e-05 1.41e-09 0.00222 1.73e-06
5 1.99e-05 1.12e-10 0.000233 4.77e-08
10 2.19e-05 4.5e-10 0.000148 3.92e-09

Gaussian Mechanism

delta Mean Variance

0.1 0.000281 1.97e-08
0.25 0.000116 6.24e-09
0.4 0.000171 4.95e-09

Table 1 Comparison of the Exponential and Gaussian Mechanisms for n= 500. The table on the left shows the

mean and variance for both mechanisms under different values of ϵ, illustrating their approximate convergence

behavior. The table on the right shows the mean and variance of the Gaussian mechanism under different values

of δ, where smaller variances indicate tighter convergence to the expected output.

8. Conclusion

In this paper, we have proposed two first-order methods for smart predict-then-optimize with

privacy guarantees. We have derived minimax optimal rates for the methods, by analyzing the

convergence rates of the respective optimization algorithms and providing hard instances with

matching complexity lower bounds. Our numerical experiments further validated the efficacy of

our proposed methods. Future directions include studying algorithms with stronger guarantees for

the SPO loss (we have primarily focused on the SPO+ loss), developing optimization algorithms

for the multi-stage SPO/SPO+ loss, and ensuring data privacy via SPO in real-world applications.
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Bassily, Raef, Cristóbal Guzmán, Michael Menart. 2021. Differentially private stochastic optimization: New

results in convex and non-convex settings. Advances in Neural Information Processing Systems 34

9317–9329.

Bassily, Raef, Adam Smith, Abhradeep Thakurta. 2014. Differentially private empirical risk minimization:

Efficient algorithms and tight error bounds. arXiv e-prints arXiv–1405.

Bertsimas, Dimitris, Nathan Kallus. 2020. From predictive to prescriptive analytics. Management Science

66(3) 1025–1044.
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A. Proof of Lemma 2

Proof of Lemma 2

lSPO+(c, ĉ) :=max
w∈S

{
cTw− 2ĉTw

}
+2ĉTw∗(c)− z∗(c)

=max
w∈S

{
cTw− 2ĉTw+2ĉTw∗(c)− z∗(c)

}
=max

w∈S
{⟨−2w+2w∗(c), ĉ⟩− ⟨−w+w∗(c), c⟩}

lµ(c, ĉ) =max
w∈S

{
⟨−2w+2w∗(c), ĉ⟩− ⟨−w+w∗(c), c⟩− 1

2
µ∥w∥2

}
:=max

w∈S
f(w,c, ĉ)

∂f

∂w
=−2ĉ+ c−µw= 0 ⇐⇒ w=

1

µ
(−2ĉ+ c)

The projection of w onto the set S, ws is continuous and unique with respect to w when S is convex.

What’s more, w is unique with respect to ĉ, ĉ is unique with respect to the descent direction Gt.

Let wt,w
′
t and Gt,G

′
t respectively be decision made in lµ and randomized descent direction trained

on neighboring dataset D,D′in t th iteration.

P(wt =W )

P(w′
t =W )

=
P(Gt = z)

P(G′
t = z)

≤ eε

eε +1

/ 1

eε +1
= eε

□

B. The Composition of DP Mechanisms

The following definitions are from Section 3 in Dwork et al. 2010. Let M be a family of database

access mechanisms. (For example M could be the set of all ε-differentially private mechanisms.)

For a probabilistic adversary A, we consider two experiments, Experiment 0 and Experiment 1,

defined as follows.

Definition 9 (k-fold Composition Experiment b for mechanism family M and adversary A).

For i= 1, . . . , k:

1. A outputs two adjacent databases x0
i and x1

i , a mechanismMi ∈M, and parameters wi.

2. A receives yi←Mi(wi, xi,b).

We allow the adversary A above to be stateful throughout the experiment, and thus it may

choose the databases, mechanisms, and the parameters adaptively depending on the outputs of

previous mechanisms.

Definition 10 (Max-divergence and Approximate Max-divergence). For probability

distributions P and Q defined over a set Ω, we define:

1. The max-divergence D∞(P∥Q) as:

D∞(P∥Q) =max
S⊆Ω

ln
P (S)

Q(S)
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2. The δ-approximate max-divergence Dδ
∞(P∥Q) as:

Dδ
∞(P∥Q) = max

S⊆Ω:P (S)⟩δ
ln
P (S)− δ
Q(S)

Definition 11. We say that the family M of database access mechanisms satisfies ε-differential

privacy under k-fold adaptive composition if for every adversary A, we have D∞(V 0∥V 1)≤ ε where
V b denotes the view of A in k-fold Composition Experiment b above.

(ε, δ)-differential privacy under k-fold adaptive composition instead requires that Dδ
∞(V 0∥V 1)≤

ε.

C. Proof of Theorem 4

First, we describe the function gt(·) in Algorithm 1 in a different way:

Definition 12.

Mt =R(θ1, . . . , θd−1,ψ), where R(θ) is a rotation matrix in Rd.

Mt satisfies a certain distribution such that:

Mtv∼

{
Uniform(u : ⟨u, v⟩ ≥ 0) w.p. eϵ

eϵ+1
,

Uniform(u : ⟨u, v⟩< 0) w.p. 1
eϵ+1

,

where v ∈Rd.

Therefore, we have that Mtv= gt(v).

Lemma 6. In our algorithms, when η≤ 4 eϵ+1
eϵ−1

µ we have

Egt

∥∥∥∥(Bt− η
n− 1

n
gt(∇L̂(Bt;D−k))

)
−
(
B′

t− η
n− 1

n
gt(∇L̂(B′

t;D′−k))

)∥∥∥∥
2

≤ ∥Bt−B′
t∥2 .

where D−k,D′−k are datasets with n− 1 data points by removing k-th data point from D and D′.

Proof of Lemma 6 Due to the convexity and 1
µ
-smoothness, we have the co-coercivity of gradi-

ent:

⟨∇L̂(Bt;D−k)−∇L̂(B′
t;D′−k),Bt−B′

t⟩ ≥ µ∥∇L̂(Bt;D−k)−∇L̂(B′
t;D′−k)∥22,

Egt

∥∥∥∥(Bt− η
n− 1

n
gt(∇L̂(Bt;D−k))

)
−
(
B′

t− η
n− 1

n
gt(∇L̂(B′

t;D′−k))

)∥∥∥∥2
2

=

∥∥∥∥(Bt−B′
t)− η

n− 1

2n

eϵ− 1

eϵ +1

(
∇L̂(Bt;D−k)−∇L̂(B′

t;D′−k)
)∥∥∥∥2

2

= ∥Bt−B′
t∥22− η

n− 1

n

eϵ− 1

eϵ +1
⟨Bt−B′

t,∇L̂(Bt;D−k)−∇L̂(B′
t;D′−k)⟩

+

(
η
n− 1

2n

eϵ− 1

eϵ +1

)2

∥∇L̂(Bt;D−k)−∇L̂(B′
t;D′−k)∥22

≤ ∥Bt−B′
t∥22 +

((
η
n− 1

2n

eϵ− 1

eϵ +1

)2

− ηµn− 1

n

eϵ− 1

eϵ +1

)
∥∇L̂(Bt;D−k)−∇L̂(B′

t;D′−k)∥22

≤ ∥Bt−B′
t∥22 when η≤ 4

eϵ +1

eϵ− 1
µ.
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□

Lemma 7 (Bousquet and Elisseeff (2002)). For any symmetric learning algorithm A, we

have ∀ neighboring datasets D,D′:

ED∼Pn [L(A(D))−L̂(A(D))] =ED∼Pn,d′i
[ℓ(A(D), d′i)− ℓ(A(D′), d′i)], (3)

where d′i is the data point in D′ which differs from D.

Lemma 8 (Lemma 14.1 in Shalev-Shwartz and Ben-David (2014)). Let v1, . . . ,vT be

an arbitrary sequence of vectors. Any algorithm with an initialization w(1) = 0 and an update rule

of the form

w(t+1) =w(t)− ηvt

satisfies
T∑

t=1

⟨w(t)−w⋆,vt⟩ ≤
∥w⋆∥2

2η
+
η

2

T∑
t=1

∥vt∥2.

With these necessary definitions and lemmas in place, we can now proceed to prove the upper

bound of the algorithm.

Proof of Theorem 4 We analyze the algorithm’s performance without projection, which gives

a looser upper bound. We follow uniform stability and shrinking ERM framework to complete our

proof. The regret can be decomposed into two parts,

R(P) =EED,D∼P

[
L(B,D)−L̂(B,D)

]
+EED,D∼P

[
L̂(B)−L̂(B∗)

]
,

where the expectation E[·] means taking expectation over algorithm’s randomness, i.e., sampling

noise vectors {gt}Tt=1, B
∗ is the optimal solution. We also omit E

[
L̂(B∗)−L(B∗)

]
since it has

nothing to do with the algorithm.

We use Bt and B
′
t to represent vectors in t-th iteration trained on neighboring datasets D and D′,

respectively. Their different data point is indexed by k, and let D−k,D′−k denote datasets with

n− 1 data points by removing k-th data point. So D−k and D′−k are identical. We first conjecture

that, with η≤ 4 eϵ+1
eϵ−1

µ,

EED∥Bt−B′
t∥2 ≤

2Lηt

n
, ∀ t= 1, . . . , T.

We prove this conjecture by induction. When t = 1, by the setting of initial points, obviously it

is true. Then suppose it is true for t-th iteration, it remains to check (t+1)-th iteration. gt(x) :=

∥x∥2Gt(x). By the update rule,

∥Bt+1−B′
t+1∥2 =

∥∥∥(Bt− η∥∇L̂µ(Bt;D)∥gt(∇L̂µ(Bt;D))
)
−
(
B′

t− η∥∇L̂µ(B
′
t;D′)∥gt(∇L̂µ(B

′
t;D))

)∥∥∥
2
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≤
∥∥∥∥(Bt− η

n− 1

n
gt(∇L̂µ(Bt;D−k))

)
−
(
B′

t− η
n− 1

n
gt(∇L̂µ(B

′
t;D′−k))

)∥∥∥∥
2

+
η

n
∥gt(∇ℓµ(Bt;xk, ck))−∇ℓµ(B′

t;x
′
k, c

′
k)∥2 .

Then, the first term can be upper bounded by Lemma 6:

Egt

∥∥∥∥(Bt− η
n− 1

n
gt(∇L̂µ(Bt;D−k))

)
−
(
B′

t− η
n− 1

n
gt(∇L̂µ(B

′
t;D′−k))

)∥∥∥∥
2

≤ ∥Bt−B′
t∥2 ,

and the second term can be upper bounded by Lipschitz continuity arguments, i.e.,

η

n
∥gt(∇ℓµ(Bt;xk, ck)−∇ℓµ(B′

t;x
′
k, c

′
k))∥2 ≤

η

n
∥gt∥∥∇ℓµ(Bt;xk, ck)−∇ℓµ(B′

t;x
′
k, c

′
k)∥ ≤

2Lη

n
.

Consequently,

Egt

∥∥Bt+1−B′
t+1

∥∥
2
≤ ∥Bt−B′

t∥2 +
2Lη

n
≤ 2Lη(t+1)

n
.

Therefore, our conjecture is correct. With this conjecture, we are able to establish uniform stability:

E∥ℓ(B;x, c)− ℓ(B′;x, c)∥ ≤E

[
L · 1

T

T∑
t=1

∥Bt−B′
t∥2 +µD

]
≤ L2η(1+T )

n
+µD, ∀ x, c.

where D= supw∈S
1
2
∥w∥2 = 1

2
B2

w.

Hence, by Lemma 7, we have

E
[
L(B)−L̂(B)

]
≤ L2η(1+T )

n
+µD.

It remains to control the second term. Let us fix a dataset D.

E
[
L̂(B)−L̂(B∗)

]
≤E

[
L̂µ

(
1

T

T∑
t=1

Bt

)
−L̂µ(B

∗)

]
+µD

(a)

≤ 1

T
·E

[
T∑

t=1

(
L̂µ(Bt)−L̂µ(B

∗)
)]

+µD

(b)

≤ 1

T
·E

[
T∑

t=1

⟨Bt−B∗,∇L̂µ(Bt)⟩

]
+µD

(c)
=

1

2T

eε +1

eε− 1
·E

[
T∑

t=1

⟨Bt−B∗, gt(∇L̂µ(Bt))⟩

]
+µD

(d)

≤ 1

2T

eε +1

eε− 1
·E

[
∥B∗∥22
2η

+
η

2

T∑
t=1

∥∥∥∇L̂µ

∥∥∥2
2

]
+µD

(e)

≤ 1

2

eε +1

eε− 1

(∥B∗∥22
2Tη

+
ηL2

2

)
+µD.

(a), (b) follow directly from the convexity of L̂.
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(c) follows the state of Mt in Definition 12, which is independent of Bt and the gradient ∇L̂µ,

i.e. Gt =Mt∇L̂µ(Bt). Therefore, we can derive the following formula:

E
[
⟨Bt−B∗, gt(∇L̂µ(Bt))⟩

]
=E

[
⟨Bt−B∗,Mt∇L̂µ(Bt)⟩

]
=E

[
E
[
⟨Bt−B∗,Mt∇L̂µ(Bt)⟩

∣∣∣Bt−B∗,∇L̂µ(Bt)
]]

=E
[
(Bt−B∗)TE

[
Mt|Bt−B∗,∇L̂µ(Bt)

]
∇L̂µ(Bt)

]
=E

[
(Bt−B∗)TE[Mt]∇L̂µ(Bt)

]
=

1

2

eε

eε +1
E
[
⟨Bt−B∗,∇L̂µ(Bt)⟩

]
+

1

2

1

eε +1
E
[
⟨Bt−B∗,−∇L̂µ(Bt)⟩

]
=

1

2

eε− 1

eε +1
E
[
⟨Bt−B∗,∇L̂µ(Bt)⟩

]
.

(d) follows Lemma 8 directly.

So,

R(P) =EED,D∼P

[
L(B,D)−L̂(B,D)

]
+EED,D∼P

[
L̂(B)−L̂(B∗)

]
≤L

2(1+T )η

n
+
eε− 1

eε +1

(∥B∗∥22
4Tη

+
ηL2

4
+
η

2
D
)
.

And furthermore, since we have already defined that ∥B∥2 ≤BB, D = 1
2
B2

w, we therefore choose

the step size to be

η=

√
eε−1
eε+1

B2
B

4T√
L2(1+T )

n
+ eε−1

eε+1
(L

2

4
+ B2

w
4
)
, T = n2

then

R(P)≤ 2

√
eε− 1

eε +1

B2
B

4n2

(
L2(1+n2)

n
+
eε− 1

eε +1

(
L2

4
+

B2
w

4

))
=O

(√
1

n
+
eε− 1

eε +1

1

n

)

□

D. Proof of Theorem 5

Proof of Theorem 5 First, define the domain of B̂ as {B̂ ∈Rd×m : B̂ij ≥ 0}.

Consider c(j) = B̂(j)x(j), where B̂(j) has value 1 only at position (j,1) and 0 elsewhere, and x(j) =

(1, . . . ,1)T for 1≤ j ≤ d. For example: when m= d= 2, B̂(1) =

(
1 0
0 0

)
, B̂(2) =

(
0 0
1 0

)
. Thus, for any

i ̸= j, ||c(i)− c(j)||1 = 2.
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[Part I] Transformation of LSPO+

LSPO+ =ED∼Pn [L(B̂)]. Assuming Pn is a uniform discrete distribution, i.e., P ((c,x) = (ci, xi)) =
1
n

, for 1≤ i≤ n, we have:

LSPO+ =
1

n

n∑
i=1

LSPO+(ci, xi)

which is the Empirical Risk Minimization (ERM). We consider the domain of the decision function

w to be S = {w≥−1}= {Iw≥−1}.

From Proposition 7 in Elmachtoub and Grigas (2022) we can transform the original problem into:

min
B̂,P
LSPO+ =min

B̂,P

1

n

n∑
i=1

[1T (2B̂xi− ci)+ 2(w∗(ci)x
T
i ) · B̂− z∗(ci)] (∗)

In (*), consider x1 = · · ·= xn = 1T and {B̂i}ni=1 ⊂ {B̂(j)}mj=1, ci = B̂ixi, 1≤ i≤ n. Taking w∗(ci) =

−ci, it is easy to see that 1
n

∑n

i=1 B̂i is an optimal solution.

[Part II] Proof by contradiction (inspired by the proof of Lemma V.1 in Bassily
et al. (2014))

Construst D(j) containing n copies of {B̂(j)x(j), x(j)}, 1≤ j ≤ d. Let n∗ = 100 eε−1
eε+1

, let ĉj = B̂jx
(j),

c∗j = B̂∗
jx

(j), where B̂j is the result of the algorithm applied to D(j), B̂∗
j is the optimal solution

based on D(j).

(1) When n= n∗, assume for all 1≤ j ≤ d, P (||ĉj − c∗j ||1 < 1)≥ 1
2

i.e.M(c∗j ) := {ĉj : ||ĉj − c∗j ||1 < 1}, P (ĉj ∈M(c∗j ))≥ 1
2
.

Since the algorithm satisfies ε-differential privacy, we can obtain:

1
2
e−εn ≤ P (ĉ1 ∈M(c∗j )), whereM(c∗j ) is disjoint with respect to j.

Summing over j, d · 1
2
e−εn ≤

∑n

j=1P (ĉ1 ∈M(c∗j ))≤ 1.

When p is large enough, n must also be very large. In this case, n≤ n∗ leads to a contradiction.

Therefore, ∃j s.t. ||ĉj − c∗j ||1 ≥ 1 with probability at least 1
2
.

(2) When n>n∗,

Construct D̃(j) containing n copies of (B(j)x(j), x(j)) and ⌊n−n∗

2
⌋ copies of (x(j), x(j)) and ⌊n−n∗

2
⌋

copies of (−x(j), x(j)). Note that c∗j , ĉj are still obtained from D(j), D̃(j) constructed according to

the algorithm in (1).

Define a new algorithm Ã :

Input D(j). Add ⌊n−n∗

2
⌋ copies of (x(j), x(j)) and ⌊n−n∗

2
⌋ copies of (−x(j), x(j)) to D(j), yielding D̃(j).

Output n
n∗ (A(D̃(j))−α), where

α=

{
I, n−n∗ odd

0, n−n∗ even



22 Qin and Wang: Privacy-Enhanced Methods for the Predict-then-Optimize Framework

It’s easy to find that Ã satisfies ε-differential privacy. Assume that for all ∀ 1 ≤ j ≤ d,

P (||A(D̃(j))x(j)− c̃∗j ||1 <n∗)≥ 1
2
.

⇒ P (||Ã(D(j))x(j)− c∗j ||1 < 1)≥ 1
2
.

⇒ From (1) we can derive a contradiction. Therefore ||cj − c∗j ||1 ≥ n∗ =Ω( e
ε−1

eε+1
) w.p. at least 1

2
.

In conclusion, ∃j s.t. ||ĉj − c∗j ||1 ≥ n∗

n
=Ω( e

ε−1
eε+1

1
n
).

[Part III] From solution to loss

LSPO+ =
1

n

n∑
i=1

[
1T (2B̂xi− ci)+ 2(w∗(ci)x

T
i ) · B̂− z∗(ci)

]
(4)

LSPO+(ĉ)−LSPO+(c
∗) =

1

n

n∑
i=1

[
21T (B̂−B∗)xi +2(w∗(ci)x

T
i ) · (B̂−B∗)

]
=

2

n

n∑
i=1

[
(1+w∗(ci))

T (Ĉ −C∗)
]

EEG [LSPO+(ĉ)−LSPO+(c
∗)] = Ω

(
eε− 1

eε +1
· 1
n

)
(5)

In addition, we know from Bassily et al. (2019) that the lower bound of stochastic convex opti-

mization is Ω( 1√
n
), thus we have that

EEG [LSPO+(ĉ)−LSPO+(c
∗)] = Ω

(
1√
n
+
eε− 1

eε +1
· 1
n

)
□

E. Proof of Theorem 7

Proof of Theorem 7 Still, we consider the risk decomposing into two parts,

R(P) =EED,D∼P

[
L(B,D)−L̂(B,D)

]
+EED,D∼P

[
L̂(B)−L̂(B∗)

]
,

For the first part, we still have
∥∥Bt+1−B′

t+1

∥∥
2
≤ 2Lη(t+1)

n
because only the process of mathematical

induction is related to the type of noise (Exponential or Gaussian), and this process can be rewritten

as:

∥Bt+1−B′
t+1∥2 =

∥∥∥(Bt− η(∇L̂(Bt;D))+ zt

)
−
(
B′

t− η(∇L̂(B′
t;D))+ zt

)∥∥∥
2

≤
∥∥∥∥(Bt− η

n− 1

n
∇L̂(Bt;D−k))

)
−
(
B′

t− η
n− 1

n
∇L̂(B′

t;D−k))

)∥∥∥∥
2

+
η

n
∥∇ℓ(Bt;xk, ck)−∇ℓ(B′

t;x
′
k, c

′
k)∥2 .

where zt ∼N (0, σ2Id). Also, with Lemma 3.6 in Hardt et al. (2016) we know that∥∥∥∥(Bt− η
n− 1

n
∇L̂(Bt;D−k))

)
−
(
B′

t− η
n− 1

n
∇L̂(B′

t;D−k))

)∥∥∥∥
2

≤ ∥Bt−B′
t∥2



Qin and Wang: Privacy-Enhanced Methods for the Predict-then-Optimize Framework 23

And
η

n
∥∇ℓ(Bt;xk, ck)−∇ℓ(B′

t;x
′
k, c

′
k)∥ ≤

2Lη

n
.

Therefore we have
∥∥Bt+1−B′

t+1

∥∥
2
≤ 2Lη(t+1)

n
, thus the first part is also bounded with L2η(1+T )

n
+µD.

For the second part, we have

E
[
L̂(B)−L̂(B∗)

]
≤ 1

T
·E

[
T∑

t=1

⟨Bt−B∗,∇L̂µ(Bt)⟩

]
+µD

=
1

T
·E

[
T∑

t=1

⟨Bt−B∗,∇L̂µ(Bt)+ zt⟩

]
+µD

≤ 1

T
·E

[
∥B∗∥2

2η
+
η

2

T∑
t=1

∥∥∥∇L̂µ(B̂t)
∥∥∥2 + ∥zt∥2]+µD,

≤ 1

T
·E

[
∥B∗∥2

2η
+
η

2

T∑
t=1

∥∥∥∇L̂µ(B̂t)
∥∥∥2]+ η

2T

T∑
t=1

E
[
∥zt∥22

]
+µD,

≤ ∥B
∗∥2

2Tη
+
ηL2

2
+
ηdσ2

2
+
η

2
D.

where D= 1
2
B2

w. Naturally, we take

η=

√
∥BB∥2

2T√
L2

2
+ dσ2

2
+ 1

4
B2

w + L2(1+T )

n

, T = n2

then

R(P) =O

(
1√
n
+

√
d ln(1/δ)

nϵ

)
.

□

F. Proof of Theorem 8

The proof follows identically as the proof of Theorem 5 except by setting n∗ = 100

√
d ln(1/δ)

ϵ
.

□

G. Omitted Proofs in Section 6

Proof of Lemma 5 Since c− 2E [c|x]≤ 0 a.s., we have

Ec,x

[
max
w∈S
{cTw− 2E [c|x]T w}

]
=Ec,x

[
(c− 2E [c|x])T min

w∈S
w
]

=Ex

[
max
w∈S
{−E [c|x]T w}

]
□
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Proof of Theorem 9

Left side =Ec,x

[
max
w∈S
{cTw− 2E[c|x]Tw}

]
+Ec,x

[
2E[c|x]Tw∗(c)

]
−Ec,x [z

∗(c)]

We begin by analyzing the first term:

Ec,x

[
max
w∈S
{cTw− 2E[c|x]Tw}

]
=Ex

[
max
w∈S

{
E[c|x]Tw− 2E[c|x]Tw

}]
=Ex

[
−E[c|x]Tw∗(E[c|x])

]
The first equality holds because of Lemma 5. Next, we move on to the second term:

Ec,x

[
2E[c|x]Tw∗(c)

]
=Ex

[
2E[c|x]TE[w∗(c)|x]

]
≤Ex

[
2E[c|x]Tw∗(E[c|x])

]
,

the inequality holds because

E[w∗(c)|x] =
∫ (

argmin
w∈S

cTw

)
p(c|x)dc≤ argmin

w∈S

(∫
cTp(c|x)dc

)
w=w∗(E[c|x])

This completes the evaluation of the left side. Now, turning to the right side:

Right side =Ec,x

[
max

w∈W∗(E[c|x])
cTw

]
−E [z∗(c)] =Ec,x

[
cTw∗(E[c|x])

]
−E[z∗(c)]

With both sides clearly defined, we observe that the left side is less than or equal to the right side.

Moreover, from Lemma 4, we know that the left side is also greater than or equal to the right side.

Therefore, we conclude that equality holds.

□

Proof of Corollary 1 ℓSPO+(B̂)≥ ℓSPO(B̂), Ec,x[ℓSPO+E[c|x]] =Ec,x[ℓSPOE[c|x]]. Therefore we

have the inequality.

□


